Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes
نویسندگان
چکیده
Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.
منابع مشابه
The Principles and Recent Applications of Bioelectrocatalysis
Bioelectrocatalysis is a phenomenon concerned with biological catalysts, which accelerate the electrochemical reactions. Bioelectrocatalysis has been widely explored by the research community in various directions. Enzymes can catalyze different chemical reactions in living organisms by enzymes as the most important biological catalysts. These enzymatic biocatalysts are commercially available a...
متن کاملA Review on Direct Electrochemistry of Catalase for Electrochemical Sensors
Catalase (CAT) is a heme enzyme with a Fe((III/II)) prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H(2)O(2) into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surf...
متن کاملحذف رنگ مستقیم سبز 6 با استفاده از نشانده شدن آنزیم لاکاس بر روی نانو ذرات فریت روی از محلول های آبی
Background and Objective: Manufactured wastewater management of industrial units containing toxic pollutants is essential for environmental protection. Considering the great applications and effects of using the nanomaterial and nanotechnology in the field of environmental protection, the nanoparticle of ZnFe2O4 has been used as a basic particle. On the other hand, enzyme processes, due to thei...
متن کاملCobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices
Redox mediators based on cobalt complexes allowed dye-sensitized solar cells (DSCs) to achieve efficiencies exceeding 14%, thus challenging the emerging class of perovskite solar cells. Unfortunately, cobalt-based electrolytes demonstrate much lower long-term stability trends if compared to the traditional iodide/triiodide redox couple. In view of the large-scale commercialization of cobalt-bas...
متن کاملElectrochemical communication between microbial cells and electrodes via osmium redox systems.
Electrochemical communication between micro-organisms and electrodes is the integral and fundamental part of BESs (bioelectrochemical systems). The immobilization of bacterial cells on the electrode and ensuring efficient electron transfer to the electrode via a mediator are decisive features of mediated electrochemical biosensors. Notably, mediator-based systems are essential to extract electr...
متن کامل